Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol ; 173(3): 1648-1658, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28153918

RESUMO

Neurachne is the only known grass lineage containing closely related C3, C3-C4 intermediate, and C4 species, making it an ideal taxon with which to study the evolution of C4 photosynthesis in the grasses. To begin dissecting the molecular changes that led to the evolution of C4 photosynthesis in this group, the complementary DNAs encoding four distinct ß-carbonic anhydrase (CA) isoforms were characterized from leaf tissue of Neurachne munroi (C4), Neurachne minor (C3-C4), and Neurachne alopecuroidea (C3). Two genes (CA1 and CA2) each encode two different isoforms: CA1a/CA1b and CA2a/CA2b. Transcript analyses found that CA1 messenger RNAs were significantly more abundant than transcripts from the CA2 gene in the leaves of each species examined, constituting ∼99% of all ß-CA transcripts measured. Localization experiments using green fluorescent protein fusion constructs showed that, while CA1b is a cytosolic CA in all three species, the CA1a proteins are differentially localized. The N. alopecuroidea and N. minor CA1a isoforms were imported into chloroplasts of Nicotiana benthamiana leaf cells, whereas N. munroi CA1a localized to the cytosol. Sequence analysis indicated an 11-amino acid deletion in the amino terminus of N. munroi CA1a relative to the C3 and C3-C4 proteins, suggesting that chloroplast targeting of CA1a is the ancestral state and that loss of a functional chloroplast transit peptide in N. munroi CA1a is associated with the evolution of C4 photosynthesis in Neurachne spp. Remarkably, this mechanism is homoplastic with the evolution of the C4-associated CA in the dicotyledonous genus Flaveria, although the actual mutations in the two lineages differ.


Assuntos
Anidrases Carbônicas/genética , Proteínas de Cloroplastos/genética , Fotossíntese/genética , Poaceae/genética , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Anidrase Carbônica I/genética , Anidrase Carbônica II/genética , Citoplasma/enzimologia , Citosol/enzimologia , Evolução Molecular , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Microscopia Confocal , Folhas de Planta/enzimologia , Folhas de Planta/genética , Poaceae/classificação , Poaceae/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
2.
Mol Plant ; 10(1): 30-46, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27646307

RESUMO

Carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the interconversion of CO2 and HCO3- and are ubiquitous in nature. Higher plants contain three evolutionarily distinct CA families, αCAs, ßCAs, and γCAs, where each family is represented by multiple isoforms in all species. Alternative splicing of CA transcripts appears common; consequently, the number of functional CA isoforms in a species may exceed the number of genes. CAs are expressed in numerous plant tissues and in different cellular locations. The most prevalent CAs are those in the chloroplast, cytosol, and mitochondria. This diversity in location is paralleled in the many physiological and biochemical roles that CAs play in plants. In this review, the number and types of CAs in C3, C4, and crassulacean acid metabolism (CAM) plants are considered, and the roles of the α and γCAs are briefly discussed. The remainder of the review focuses on plant ßCAs and includes the identification of homologs between species using phylogenetic approaches, a consideration of the inter- and intracellular localization of the proteins, along with the evidence for alternative splice forms. Current understanding of ßCA tissue-specific expression patterns and what controls them are reviewed, and the physiological roles for which ßCAs have been implicated are presented.


Assuntos
Anidrases Carbônicas/genética , Anidrases Carbônicas/fisiologia , Plantas/enzimologia , Isoformas de Proteínas/genética
3.
J Exp Bot ; 63(17): 6297-308, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23077201

RESUMO

The Neurachninae is the only grass lineage known to contain C(3), C(4), and C(3)-C(4) intermediate species, and as such has been suggested as a model system for studies of photosynthetic pathway evolution in the Poaceae; however, a lack of a robust phylogenetic framework has hindered this possibility. In this study, plastid and nuclear markers were used to reconstruct evolutionary relationships among Neurachninae species. In addition, photosynthetic types were determined with carbon isotope ratios, and genome sizes with flow cytometry. A high frequency of autopolyploidy was found in the Neurachninae, including in Neurachne munroi F.Muell. and Paraneurachne muelleri S.T.Blake, which independently evolved C(4) photosynthesis. Phylogenetic analyses also showed that following their separate C(4) origins, these two taxa exchanged a gene encoding the C(4) form of phosphoenolpyruvate carboxylase. The C(3)-C(4) intermediate Neurachne minor S.T.Blake is phylogenetically distinct from the two C(4) lineages, indicating that intermediacy in this species evolved separately from transitional stages preceding C(4) origins. The Neurachninae shows a substantial capacity to evolve new photosynthetic pathways repeatedly. Enablers of these transitions might include anatomical pre-conditions in the C(3) ancestor, and frequent autopolyploidization. Transfer of key C(4) genetic elements between independently evolved C(4) taxa may have also facilitated a rapid adaptation of photosynthesis in these grasses that had to survive in the harsh climate appearing during the late Pliocene in Australia.


Assuntos
Evolução Biológica , Transferência Genética Horizontal , Fotossíntese/genética , Poaceae/genética , Poliploidia , Isótopos de Carbono/análise , Núcleo Celular/genética , Marcadores Genéticos , Tamanho do Genoma , Filogenia , Folhas de Planta/classificação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plastídeos/genética , Poaceae/classificação , Poaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...